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Abstract.We demonstrate how factorial regression can be used to analyse numerical model experiments, testing the effect of 8 

different model settings. We analysed results from a  coupled atmosphere-ocean model to explore how the different choices 9 

in the experimental set-up influence the seasonal predictions. These choices included a representation of the sea-ice and the 10 

choice of top of the atmosphere, and the results suggested that the simulated monthly mean temperatures poleward of the 11 

mid-latitudes are highly sensitivity to the specification of the top of the atmosphere, interpreted as the presence or absence of 12 

a stratosphere. The seasonal forecasts for the mid-to-high latitudes were also sensitive to whether the model set-up included 13 

a dynamic or non-dynamics sea-ice representation, although this effect was less important than the role of the stratosphere. 14 

The temperature in the tropics was insensitive to these choices.  15 

1 Introduction 16 

The question of whether seasonal forecasting has useful skill is getting increasingly relevant with the progress in climate 17 

modelling. Another question is how we can learn more about such skills, and one strategy is to examine the models used in 18 

seasonal forecasting. These include state-of-the-art coupled atmosphere-ocean-land-surface models, built on our knowledge 19 

of physical processes and formulated in terms of computer code (Palmer and Anderson, 1994; Stockdale et al., 1998; Palmer, 20 

2004; George and Sutton, 2006). They can be used for seasonal forecasting if a correct initial state is provided, and from 21 

which the subsequent evolution can be simulated. Their skill depends on several factors, such as the quality of the initial 22 

states, the representation of all relevant processes, and whether the seasons ahead truly are predictable in the presence of 23 

non-linear chaos (Palmer, 1996). Thus, in order to address the initial question of useful skill for seasonal predictions, we 24 
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need to understand what is important and what is irrelevant for the outcome of the predictions which includes choices about 25 

the model set-up. We know that the atmosphere in the high latitudes is subject to non-linear dynamics, and that the effect of 26 

different factors may interfere and amplify or dampen each other (Charney,  1947; Gill, 1982; Lindzen, 1990; Held,  1993; 27 

Feldstein,  2003). 28 

 29 

1.1 Background 30 

It is well-known that numerical weather prediction (NWP) has a limited forecast horizon because small initial errors 31 

will grow over time in a non-linear fashion (Lorenz, 1963). The case for seasonal forecasting is somewhat different, as it 32 

relies on slow changes in the ocean and cryosphere, which act as persistent boundary conditions. NWP and seasonal 33 

forecasting represent two types of predictability referred to as ‘type 1’ and ‘type 2’ (Palmer, 1996). Whereas NWP is more 34 

an initial value problem (‘type 1’), the seasonal forecasts embeds a degree of the boundary value problem  aspect (‘type 2’). 35 

Furthermore, seasonal forecasts tend to present the statistics of the weather over a given interval, rather than the exact state at 36 

any instant. In other words, seasonal forecasts, can be compared with predicting a change in the statistics of a sample of 37 

measurements, whereas weather forecasting is more like predicting the details about one specific data point in that sample. 38 

Models used for seasonal forecasting have traditionally involved a model for the atmosphere coupled to an ocean 39 

component, and were originally developed for the tropical region and the El Niño Southern Oscillation (Anderson,  1995; 40 

Stockdale,  et al., 1998; Palmer and Anderson, 1994). Aspects such as sea-ice, the troposphere and snow cover were not 41 

emphasised as they were not believed to play an important role for the seasonal weather evolution.  More recent studies have 42 

looked at the potential influence from sea-ice (Balmaseda et al., 2010;  Petoukhov and Semenov, 2010; Overland and Wang, 43 

2010; Francis et al. 2009; Deser et al, 2004; Magnusdottir et al., 2004; Seierstad and Bader, 2008; Benestad, et al. 2010; 44 

Orsolini et al. 2012), especially after the recent dramatic downward trends in the sea ice extent (Kumar et al. 2010; Boé, et 45 

al., 2010; Holland et al., 2008; Wilson, 2009; Kauker et al., 2009; Stroeve et al., 2007, 2008). Other studies have involved 46 

the effect of snow-cover on the atmospheric circulation (Cohen and Entekhabi, 1999; Ge and Gong, 2009; Ueda et al., 2003; 47 

Hawkins et al., 2002; Watanabe and Nitta, 1998; Orsolini et al, 2013) or the influence of stratospheric conditions on the 48 

lower troposphere (Baldwin et al., 2001, 2003; Thompson et al. 2002). Few of these studies, however, have looked at how 49 

these different factors in combination may interfere with each other. Nor has there been many sensitivity tests for 50 

investigating how the model set-up with different combinations of the components representing these different aspects affect 51 

the results. One question we would like to address is whether the response to these different factors add linearly or if the 52 

Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-14, 2016
Manuscript under review for journal Earth Syst. Dynam.
Published: 31 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



3 

 

response is a non-linear function of these factors. Furthermore, it is interesting to find out which of these factors are more 53 

dominant than others. Moreover, our objective was to try to understand which processes simulated by the model are more 54 

important, rather than what real signals there are in nature. In this sense, this was a so-called perfect model study (Day et al., 55 

2014). We present the combination of an experimental design (Williams, 1970; Kleijnen and Standridge, 1988) and 56 

analytical techniques that can address this question. The results were taken from a ‘synthesis’ experiment with a moderately 57 

high-resolution earth system model. Hence, these numerical experiments constitute a kind of sensitivity study (Bürger et al., 58 

2013). 59 

 60 

2 Method & Data 61 

2.1 Model simulations 62 

The model used in this study is the EC-Earth version 2.1 state-of-the-art earth system model (Hazeleger et. al, 2010), which 63 

has been developed by a consortium of meteorological Institutes/Universities across Europe. The atmospheric component of 64 

the EC-Earth model is  based on ECMWF’s Integrated Forecasting System (IFS) cycle 31R1 with a new convection scheme 65 

and a new land surface scheme. The ocean component is based on version 2 of the NEMO model (Madec, 2008), with a 66 

horizontal resolution of nominally 1x1 degrees and 42 vertical levels. The sea ice model is the LIM2 model (Fichefet and 67 

Maqueda, 1997). The ocean/ice model is coupled to the atmosphere/land model through the OASIS 3 coupler (Valcke, 2006). 68 

The synthesis experiments consists of a set of 12 coupled model simulations. Six of these simulations used the L62 vertical 69 

resolution for the atmospheric component which extends up to 5 hPa, while the other six used the higher resolution L91 70 

version, which extends up to 0.01 hPa. These two sets of experiments were designed to determine the sensitivity of model 71 

results to a better representation of the stratosphere. Further to evaluate the role of sensitivity to the representation of sea-ice, 72 

the LIM2 sea-ice model was implemented as a standard thermodynamic-dynamic model (DyIce) and as a thermodynamic 73 

only model (NoDyIce). Finally, sensitivity to initial conditions were tested by introducing perturbations to initial conditions 74 

corresponding to positive/negative NAO SST anomaly patterns over the North Atlantic (Melsom, 2010) All simulations 75 

started on 1 Jan 1990 and lasted 90 days. An overview of the model simulations are listed in Table 1. 76 

2.2 The analysis 77 
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Here the experiments and analysis used an approach known as ‘factorial design’ (Yates and Mather, 1963; Fisher, 1926; Hill 78 

and Lewicki, 2005; Wilkinson and Rogers, 1973; Benestad et al., 2010), where a factorial regression was used to assess 79 

which influence each of the choices in the model set-up has on the forecasts. Factorial design is a technique that is well-80 

suited for analysing a set of factors which are considered to have potential effects on the outcome in experiments, where an 81 

analysis of variance (ANOVA; Wilks, 1995) provides estimates for error bars and the level of statistical significance. Hence, 82 

the factorial regression offers an alternative to traditional ways for estimating statistical significance used in meteorology and 83 

climate sciences, such as difference tests between two ensembles. Factorial regression is especially handy when data is 84 

generated by a process which involves two or more factors (set-up options or categories) that are difficult to quantify due to 85 

their discrete nature (e.g. some factors may either present or absent), and has been used to analyse the effect of introducing 86 

different crop varieties in agriculture (e.g. Baril et al. 1995; Vargas et al. 1999; Vargas et al. 2006; Voltas et al. 2005). It is 87 

based on the concept “factorial experiment”, or “factorial design”, in statistics which involves two or more factors each of 88 

which can be assigned a category or a discrete value. The analysis takes into account all possible combinations of levels over 89 

all such factors including their interactions.  90 

The model response to different initial conditions or different model set-up with different options for three configurations 91 

(SST perturbation, model top, and sea-ice model) was investigated, and a comparison was made between the different 92 

experiments in terms of vertical and horizontal cross sections of temperature anomalies. If the final response ∆T is a linear 93 

function of sea-ice, SST, and stratospheric effects, then it can be expressed as a sum of these different contributions ∆T = x1 94 

C(sea-ice) + x2 C(SST) + x3 C(stratosphere). The factorial regression provided an estimate of the coefficients xi and their 95 

error estimates. In a non-linear case, this linear expression was unlikely to provide a good description, and the regression 96 

analysis will yield large errors and low statistical significance. 97 

We do not know the relative strength of the different factors in terms of an input, however, the factorial regression quantifies 98 

the differences between output from different combinations of subsets. It was also used to estimate the probability that the 99 

response in the different combinations of these subsets would be due to chance. The results from the factorial regression 100 

were subsequently used to explore the combined effect of several factors. 101 

The Walker test was used to assess the false discovery rate of the p-values found in the factorial regression (Wilks, 2006). 102 

The test involves comparing the minimum p-value pn from the local tests with pW= 1 - (1 - α)
1/K

 for K locations and the 103 

statistical significance level α. If  pn < pW then the expected fraction of local null hypothesis with incorrect rejections is 104 

smaller than the number of statistically significant local p-values. 105 
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3 Results 106 

Figures 1-2 show the difference in the forecasts associated stratosphere, more specifically between the low (L62) and high 107 

(L91) top versions of the atmosphere for month 3. Figure 1 shows horizontal transects at 200 and 50 hPa levels respectively. 108 

They show the monthly mean temperature starting with a 2-month lead time, and the left panels show results with no initial 109 

perturbation (neutral NAO conditions), the middle panels show results from model simulation with initial conditions set at 110 

NAO, and the right panels results for which the initial conditions were the negative phase of the NAO. All the panels show 111 

that there were differences between the low and high top results, and the difference between the low and high-top model 112 

simulation is most pronounced at negative and positive NAO-type initial conditions (not shown). Hence, the forecasted air 113 

temperature is sensitive to the inclusion of the upper part of the atmosphere, and the effect can be seen extending throughout 114 

the entire vertical extent of the atmosphere (not shown). The difference between the upper and lower rows show the effect of 115 

dynamic versus non-dynamic sea-ice representation. With a non-dynamic sea-ice, the inclusion of a stratosphere resulted in 116 

stronger vertical dipole patterns at certain longitudes and for positive NAO initial conditions. For the negative NAO initial 117 

conditions, the dynamical sea-ice representation enhanced the differences between the L91 and L62 model simulations.   118 

Figure 1 suggests that the effect of including the stratosphere and the representation of sea-ice matter for the mid-latitude to 119 

the polar regions, and the choice of the vertical levels had less impact in the tropics. The response suggests mid-latitude 120 

wave-like structures in the 200 hPa temperatures, albeit with a tendency of a coherent anomaly over the North Pole. The 121 

choice of the sea-ice representation had a pronounced impact on the simulation of the monthly mean temperature after 3 122 

months. The horizontal picture at 50 hPa (Figure 1) suggests radically different wave structure for the negative NAO phase, 123 

however, whereas the ‘positive’ and ‘neutral’ NAO states differences are more in the details and magnitude. The exact 124 

geographical structure in these maps are not the important point here, as the longitude of action will depend on the initial 125 

condition. The important information here is the pronounced response in the mid-to-high latitudes. 126 

In summary, it is apparent from Figures 1-2 that the effect of different model aspects such as the choice of model top and 127 

sea-ice representation influence the model forecasts. Furthermore, we see that the influence varies with the initial SST 128 

conditions, and that different sea-ice representation may introduce changes in the forecast of similar magnitude as the 129 

influence of the model top. It is difficult to compare these effects with that of the initial conditions merely from Figures 1-2, 130 

however, we can compare the effect from these different aspects through the means of a factorial regression. The analysis of 131 

variance for the factorial regression yields a set of coefficients β describing the association between the temperature and the 132 

model set-up choice, as well as the associated error bars ε  and p-values p.    133 

Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-14, 2016
Manuscript under review for journal Earth Syst. Dynam.
Published: 31 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



6 

 

Figure 2 represents the coefficients and the error estimates from the factorial regression. The top panel shows the mean air 134 

temperature for the model forecasts with a model set-up of dynamical sea-ice component, no perturbation in the SST, and 62 135 

vertical levels (low top). Panels b-f show difference in the forecasts due to different choices in the model set-up in terms of 136 

the regression coefficients β, and panels g-e show error estimates for these coefficients. Regions with large values estimated 137 

for the coefficients and large errors suggest a high sensitivity but also that the response cannot readily be attributed to the 138 

given factor. In other words, the level of both the signal and the noise is high. The magnitude of the error was mainly below 139 

3K except for around 100ºE near the 100hPa level, and generally smaller than the influence of the variable.  The results 140 

suggests that the results were sensitive to both the representation of the sea-ice and the inclusion of the stratosphere, as well 141 

as the initial conditions. The analysis also suggests that the magnitude of the effect of the sea-ice representation and the 142 

model top was similar to those of the different SST perturbation near 60ºN. Furthermore, the error estimates associated with 143 

the three factors (SST-perturbation, sea-ice representation and atmosphere top) exhibited similar magnitudes and spatial 144 

structure. A comparison between the different panels in Figure 2 suggests that the different choices for model set-up had 145 

similar magnitude on the predicted outcome for all these factors. 146 

Figure 3 shows the ratio response to error for sea ice (upper), positive NAO SST perturbation (second from the top), negative 147 

NAO SST perturbation (third), and the stratosphere L91 (bottom). Only a small region had a response that was greater in 148 

magnitude than the error estimate for the sea ice, whereas for the SST perturbations and the stratosphere, the regions with  149 

response-to-error ratio has a magnitude greater to unity were more extensive. Note, both large negative and positive values 150 

indicate that the signal is stronger than the noise |β/ε|>1 as β may be both positive and negative whereas ε is positive. 151 

The factorial regression gave highest number of low p-values for the stratosphere (L91), followed by the SST-perturbation 152 

(not shown). For most of the 60ºN vertical transect, the sea-ice representation did not yield a large response compared to the 153 

error term. Furthermore, for a global statistical significance level of α=0.05 and K=3840, the threshold value for the Walker  154 

test was pW=1.3 ·10
-5

. The minimum p-value for sea ice was 0.01, for SST-perturbation pn= 9.2·10
-4 

and the stratosphere pn 155 

=1.6·10
-4

. In other words, the 12-member experiment was not sufficient to resolve the response in the air temperature 156 

forecast at 60ºN for month 3 to the different set-up options, however, the results suggest that the model top had the greatest 157 

impact on the forecast. The lack of a clear dependency between the sea ice representation and the forecast was also found for 158 

the summer in Benestad et al. (2010), and the obscure links between the factors and the response may be explained by the 159 

presence of strong nonlinear dynamics, where one given factor may result in different forecasts depending on other 160 

influences.   161 
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The question of degree of nonlinearity can be addressed by comparing the sum of the influence from the different factors 162 

with simulations with and without a set of factors combined. i.e, we check for the equivalency: 163 

DyIce pNAO L91 - NoDyIce nNAO L62 = (DyIce - NoDyIce) nNAO L62 +     …..... (1) 164 

NoDyIce (pNAO - nNAO) L62 + NoDyIce nNAO (L91 - L62) 165 

 166 

Here, the LHS of equation 1 (Figure 4a) shows  the difference between the simulation with high top, dynamic sea ice, 167 

positive NAO perturbation (DyIce pNAO L91) and that with low top, non-dynamic sea ice, negative NAO (NoDyIce nNAO 168 

L62). Figure 4a is compared with sum of the differences from individual factors  (RHS of equation 1, Figure 4b). The 169 

comparison shows that the non-linear model response is mainly confined to the mid- to high-latitudes especially in the 170 

northern Hemisphere (Figure 4c), e.g., along the 60ºN transect presented in Figures 3-5.   171 

4 Discussion 172 

The set of sensitivity experiments shows that seasonal forecasts at mid-to-high latitudes are sensitive to a number of factors 173 

concerning the model set-up, and that the choice of subjective and subtle options can have as strong effect on the monthly 174 

mean temperature poleward of the mid-latitudes as the initial conditions. A factorial design experiment allows us to assess 175 

the relative magnitudes of different model height with that of different sea-ice or different SST perturbations. We can also 176 

test the response in the model to see if they are close to being a linear superposition of the different single factors, or if the 177 

model response is highly non-linear. The statistical significance is estimated based on the factorial regression. The 178 

magnitude of the effect of the sea ice, SST-perturbations and the model top height were roughly similar, although the 179 

response to the sea ice was somewhat weaker than the others. The lower ratio of estimate-to-error also reflect the degree of 180 

nonlinearity, and the lower p-values associated with the sea-ice may be due to a greater degree of nonlinearity in the 181 

response to the sea-ice representation. The experiment nevertheless suggested that stratospheric conditions are important for 182 

mid-to-high-latitude seasonal forecasting. This experiment was only carried out for the northern hemisphere winter, and may 183 

change with season. The stratosphere decouples in the summer, and there is a hint of a weaker influence from the model top 184 

in the southern hemisphere where there was summer. 185 

There is previous work where model sensitivity and uncertainty have been assessed (e.g. Rinke et al 2000; Wu, et al. 2005; 186 

Pope and Stratton, 2002; Jacob and Podzun 1997; Knutti et al. 2002; Dethloff et al. 2001), however, most of these 187 
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assessments have been carried out for climate simulations as opposed to seasonal forecasts.  In seasonal forecasting, the 188 

emphasis has been more on multi-model forecasts and their spread (Weisheimer et al. 2009), rather than the configuration of 189 

single models. However, Jung et al. (2012) discussed the effect of the spatial resolution on seasonal forecast based on an 190 

experimental design with a single model. The use of factorial regression has was also discussed by Rinke et al (2000) in 191 

conjunction with climate simulations, and Benestad et al. (2010) used it in a study of seasonal predictability and the effect of 192 

of boundary conditions associated with sea-ice and initial conditions.  This study presented applied factorial regression to a 193 

new set of model configuration options, including the model top, the representation of sea-ice, and initial conditions. In this 194 

case, we emphasised the individual factors rather than their interaction because of the limited sample of model runs.         195 

 196 

5 Conclusions 197 

The sensitivity tests revealed that seasonal predictability of the temperature at the mid-to-high latitudes was as sensitive to 198 

subjective choices regarding the model set-up as the initial SST conditions. The forecasts for high-latitude regions were in 199 

particular sensitive to the model top, but also the representation of sea ice influenced the outcome. Hence, these results 200 

illustrate the difficulties associated with seasonal forecasting at the higher latitudes and has an effect of the forecast skill. The 201 

tropical temperatures were insensitive to these choices, and the sea-ice representation and the stratosphere do not have a 202 

visible effect on ENSO forecasts. 203 

 204 
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 344 

Figure captions. 345 

Figure 1: Map of monthly mean air temperature difference at 200 hPa between the high-top and low-top experiments for the 346 

third month. 347 

Figure 2: Coefficients and error estimates from the factorial regression of air temperature at 60ºN. These results describe the 348 

systematic differences associated between the different choices in the model set-up. 349 

Figure 3: The ratio of the factorial regression coefficients to the error estimate for different factors: (a) sea ice representation, 350 

(b) positive NAO SST perturbation, (c) negative NAO SST perturbation  and (d) the model top L91/stratosphere (bottom).   351 

Figure 4: Monthly mean air temperaure at 60ºN. (a) Difference between DyIce pNAO L91 and NoDyIce nNAO L62 (b) Sum 352 

of the differences: NoDyIce (pNAO - nNAO) L62, (DyIce - NoDyIce) nNAO L62 and NoDyIce nNAO (L91 - L62) (c) 353 

Difference (a) - (b). 354 
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Figure 1: The logo of Copernicus Publications. 368 
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